Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
2.
Lab Med ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522074

RESUMO

BACKGROUND: Given that obesity and insulin resistance play key roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the connection between leptin and these metabolic diseases, the association between NAFLD and a leptin receptor gene (LEPR) polymorphism was examined. METHODS: In this genetic case-control association study, 144 biopsy-proven NAFLD patients and 144 controls were genotyped for the LEPR gene Gln223Arg (rs1137101) polymorphism using the polymerase chain reaction-restriction fragment length polymorphism method. RESULTS: The distributions of genotypes and alleles of Gln223Arg variant were in accordance with the Hardy-Weinberg equilibrium in the study groups (P > .05). Multivariate logistic regression analysis showed that the LEPR Gln223Arg Arg/Arg genotype was an independent risk factor for NAFLD; the Arg/Arg genotype, compared with the Gln/Gln genotype, was associated with a 2.09-fold increased risk for NAFLD (P = .036, odds ratio = 2.09 [95% CI = 1.31-5.95]). CONCLUSIONS: We found that the LEPR Gln223Arg Arg/Arg genotype was independently associated with a more than 2-fold rise in biopsy-proven NAFLD risk. Our findings, however, need to be corroborated by further studies.

4.
Eur J Med Res ; 29(1): 190, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504356

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Diabetes Mellitus Tipo 2/genética , Medicina de Precisão , Variação Genética
5.
Mol Biol Rep ; 51(1): 265, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302841

RESUMO

BACKGROUND: The gut microbiota has become one of the main risk factors for the formation and development of colorectal cancer (CRC). CRC intensification may be due to the microbial pathogens' colonization and their released metabolites. Here, we analyzed Bacteroidetes and Clostridia bacteria in CRC patients and studied bacterial metabolome in cancerous tissues compared to their adjacent normal tissues. METHODS AND RESULTS: The population of selected bacteria in biopsy specimens of 30 patients with CRC was studied by RT-qPCR. The mutagenicity and cytotoxicity effects of microbiota metabolites were evaluated by Ames test and MTT Assay, respectively. Moreover, gene expression in carcinogenic pathways was studied by RT-qPCR, and genes with different expressions in tumor and non-tumor tissues were diagnosed. Based on microbiota analysis, the relative abundance of Clostridia and C. difficile was significantly higher in CRC tissue, whereas C. perfringens showed higher relative abundance in normal tissue. AIMES test confirmed the proliferation and mutagenicity effects of the bacterial metabolites in CRC patients. Significant upregulation of C-Myc, GRB2, IL-8, EGFR, PI3K, and AKT and downregulation of ATM were observed in CRC samples compared to the control. CONCLUSIONS: The influence of bacterial metabolites on inflammation and altered expression of genes in the cell signaling pathways was observed. The findings confirm the role gut microbiota composition and bacterial metabolites as key players in CRC onset and development.


Assuntos
Clostridioides difficile , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/metabolismo , Intestinos/patologia , Bactérias/genética , Células Epiteliais/metabolismo
6.
Gut Pathog ; 16(1): 9, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378690

RESUMO

BACKGROUND: Colorectal cancer (CRC) poses a significant healthcare challenge, accounting for nearly 6.1% of global cancer cases. Early detection, facilitated by population screening utilizing innovative biomarkers, is pivotal for mitigating CRC incidence. This study aims to scrutinize the fecal and salivary microbiomes of CRC-positive individuals (CPs) in comparison to CRC-negative counterparts (CNs) to enhance early CRC diagnosis through microbial biomarkers. MATERIAL AND METHODS: A total of 80 oral and stool samples were collected from Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran, encompassing both CPs and CNs undergoing screening. Microbial profiling was conducted using 16S rRNA sequencing assays, employing the Nextera XT Index Kit on an Illumina NovaSeq platform. RESULTS: Distinct microbial profiles were observed in saliva and stool samples of CPs, diverging significantly from those of CNs at various taxonomic levels, including phylum, family, and species. Saliva samples from CPs exhibited abundance of Calothrix parietina, Granulicatella adiacens, Rothia dentocariosa, and Rothia mucilaginosa, absent in CNs. Additionally, Lachnospiraceae and Prevotellaceae were markedly higher in CPs' feces, while the Fusobacteria phylum was significantly elevated in CPs' saliva. Conversely, the non-pathogenic bacterium Akkermansia muciniphila exhibited a significant decrease in CPs' fecal samples compared to CNs. CONCLUSION: Through meticulous selection of saliva and stool microbes based on Mean Decrease GINI values and employing logistic regression for saliva and support vector machine models for stool, we successfully developed a microbiota test with heightened sensitivity and specificity for early CRC detection.

7.
Cytokine ; 175: 156495, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184893

RESUMO

Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.


Assuntos
COVID-19 , RNA Longo não Codificante , Humanos , Biomarcadores , COVID-19/genética , Citocinas/genética , Citocinas/metabolismo , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
8.
BMC Complement Med Ther ; 24(1): 37, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218845

RESUMO

BACKGROUND: Clostridioides difficile infection (CDI) is one of the most common health care-acquired infections. The dramatic increase in antimicrobial resistance of C. difficile isolates has led to growing demand to seek new alternative medicines against CDI. Achillea millefolium L. extracts exhibit strong biological activity to be considered as potential therapeutic agents. In this work, the inhibitory effects of A. millefolium, its decoction (DEC) and ethanol (ETOH) extracts, were investigated on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S) induced inflammation and apoptosis. METHODS: Phytochemical analysis of extracts was performed by HPLC and GC analysis. The antimicrobial properties of extracts were evaluated against C. difficile RT001. Cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of extracts and Tox-S were examined by MTT assay and microscopy, respectively. Anti-inflammatory and anti-apoptotic effects of extracts were assessed in Tox-S stimulated Caco-2 cells by RT-qPCR. RESULTS: Analysis of the phytochemical profile of extracts revealed that the main component identified in both extracts was chlorogenic acid. Both extracts displayed significant antimicrobial activity against C. difficile RT001. Moreover, both extracts at concentration 50 µg/mL had no significant effect on cell viability compared to untreated cells. Pre-treatment of cells with extracts (50 µg/mL) significantly reduced the percentage of Vero cells rounding induced by Tox-S. Also, both pre-treatment and co-treatment of Tox-S stimulated Caco-2 cells with extracts significantly downregulated the gene expression level of IL-8, IL-1ß, TNF-α, TGF-ß, iNOS, Bax, caspase-9 and caspase-3 and upregulated the expression level of Bcl-2. CONCLUSION: The results of the present study for the first time demonstrate the antimicrobial activity and protective effects of A. millefolium extracts on inflammatory response and apoptosis induced by Tox-S from C. difficile RT001 clinical strain in vitro. Further research is needed to evaluate the potential application of A. millefolium extracts as supplementary medicine for CDI prevention and treatment in clinical setting.


Assuntos
Achillea , Anti-Infecciosos , Clostridioides difficile , Animais , Chlorocebus aethiops , Humanos , Clostridioides difficile/genética , Células CACO-2 , Ribotipagem , Células Vero , Achillea/química , Achillea/genética , Células Epiteliais , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos
9.
Int Health ; 16(1): 23-34, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37052134

RESUMO

Patients with diabetes are at an increased risk of intestinal parasitic infections (IPIs). We evaluated the pooled prevalence and OR of IPIs in patients with diabetes through a systematic review and meta-analysis. A systematic search was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for studies reporting IPIs in patients with diabetes through 1 August 2022. The collected data were analyzed using comprehensive meta-analysis software version 2. Thirteen case-control studies and nine cross-sectional studies were included in this study. The overall prevalence of IPIs in patients with diabetes was calculated to be 24.4% (95% CI 18.8 to 31%). Considering the case-control design, the prevalence of IPIs in case (25.7%; 95% CI 18.4 to 34.5%) was higher than controls (15.5%; 95% CI 8.4 to 26.9%) and a significant correlation was observed (OR, 1.80; 95% CI 1.08 to 2.97%). Moreover, a significant correlation was seen in the prevalence of Cryptosporidium spp. (OR, 3.30%; 95% CI 1.86 to 5.86%), Blastocystis sp. (OR, 1.57%; 95% CI 1.11 to 2.22%) and hookworm (OR, 6.09%; 95% CI 1.11 to 33.41%) in the cases group. The present results revealed a higher prevalence of IPIs in patients with diabetes than in controls. Therefore, the results of this study suggest a proper health education program to preventing measures for the acquisition of IPIs in patients with diabetes.


Assuntos
Criptosporidiose , Cryptosporidium , Diabetes Mellitus , Enteropatias Parasitárias , Humanos , Prevalência , Estudos Transversais , Fezes/parasitologia , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/parasitologia , Diabetes Mellitus/epidemiologia
10.
Cancer Rep (Hoboken) ; 7(1): e1930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37919876

RESUMO

BACKGROUND: Approximately 5% of colorectal cancers (CRCs) are hereditary. Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), is the most common form of recognized hereditary CRC. Although Iran, as a developing country, has a high incidence of CRC, the spectrum of variants has yet to be thoroughly investigated. AIMS: This study aimed to investigate pathogenic and non-pathogenic variants in MLH1 and MSH2 genes in Iranian patients with suspected Lynch syndrome (sLS). METHODS AND RESULTS: In the present study, 25 peripheral blood samples were collected from patients with sLS and high microsatellite instability (MSI-H). After DNA extraction, all samples underwent polymerase chain reaction and Sanger sequencing to identify the variants in the exons of MLH1 and MSH2 genes. The identified variants were interpreted using prediction tools, and were finally reported under ACMG guidelines. In our study population, 13 variants were found in the MLH1 gene and 8 in the MSH2 gene. Interestingly, 7 of the 13 MLH1 variants and 3 of the 8 MSH2 variants were novel, whereas the remaining variants were previously reported or available in databases. In addition, some patients with sLS did not have variants in the exons of the MLH1 and MSH2 genes. The variants detected in the MLH1 and MSH2 genes had specific characteristics regarding the number, area of occurrence, and their relationship with demographic and clinicopathologic features. CONCLUSION: Overall, our results suggest that analysis of MLH1 and MSH2 genes alone is insufficient in the Iranian population, and more comprehensive tests are recommended for detecting LS.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/epidemiologia , Proteína 2 Homóloga a MutS/genética , Irã (Geográfico)/epidemiologia , Proteína 1 Homóloga a MutL/genética , Proteínas de Ligação a DNA/genética , Nucleotídeos
11.
Small ; 20(3): e2302532, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697021

RESUMO

Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Quimioterapia Combinada , Nanotecnologia , Polímeros/farmacologia
12.
Arch. endocrinol. metab. (Online) ; 68: e230017, 2024. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520074

RESUMO

ABSTRACT Objective: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and a growing global epidemic. In NAFLD, liver fat surpasses 5% of hepatocytes without the secondary causes of lipid accumulation or excessive alcohol consumption. Given the link between NAFLD and insulin resistance, the possible association between the rs2854744 (−202 G>T) promoter polymorphism of insulin-like growth factor binding protein 3 (IGFBP3) gene and NAFLD was investigated in this study. Materials and methods: In this genetic case-control association study, the IGFBP3 rs2854744 genotypes of 315 unrelated individuals, including 156 patients with biopsy-proven NAFLD and 159 controls, were determined using polymerase chain reaction/restriction fragment length polymorphism analyses. Results: The "GT+TT" genotype of the IGFBP3 rs2854744 polymorphism, compared with the "GG" genotype, was associated with a 2.7-fold increased risk of NAFLD after adjustment for confounding factors (P = 0.009; odds ratio [OR] = 2.71; 95% confidence interval [CI] = 1.19-3.18). Additionally, the IGFBP3 rs2854744 "T" allele, in comparison with the "G" allele, was significantly overrepresented in NAFLD patients than the controls (P = 0.008; OR = 1.85; 95%CI = 1.23-2.94). Conclusion: Our findings first indicated that the IGFBP3 rs2854744 "GT+TT" genotype is a marker of increased NAFLD susceptibility; however, it needs to be supported by further investigations in other populations.

13.
Sci Total Environ ; 912: 169575, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38143000

RESUMO

Considering the major role of vegetables in the transmission of gastrointestinal diseases, investigation of the presence of gastrointestinal viruses is particularly important for public health. Additionally, monitoring and investigating potential points of contamination at various stages of cultivation, harvesting, and distribution can be important in identifying the sources of transmission. This study was conducted with the aim of identifying norovirus, adenovirus, hepatitis A virus, hepatitis E virus, rotaviruses, and astroviruses in vegetable samples from the fields and fruit and vegetable centers of Tehran City, and to investigate their presence in irrigation water by RT-qPCR. This study was carried out in two phases: initial and supplementary. During phase I, a total of 3 farms and 5 fruit and vegetable centers and a total of 35 samples from farms, 102 samples from fruit and vegetable centers and 8 agricultural water samples were collected. Zero, 16 and 1 samples were positive for at least one of the viruses from each of the sources, respectively. During phase II, 88 samples from 23 farms, 226 samples from 50 fruit and vegetable centers and 16 irrigation water samples were collected, with 23, 57 and 4 samples were positive for at least one virus, respectively. Rotavirus was the most frequently identified virus among the samples, followed by NoV GII, NoV GI, AstV, and AdV. HAV and HEV were not detected in any of the tested samples. The results of this study suggest that there may be a wide presence of viruses in vegetables, farms, and fruit and vegetable centers in Tehran City, which could have significant consequences considering the fact that many of these foods are consumed raw. Additionally, the detection of some of these viruses in irrigation water suggests that this may be a potential route for viral contamination of produce.


Assuntos
Enterovirus , Vírus da Hepatite E , Rotavirus , Vírus , Humanos , Água , Fazendas , Irã (Geográfico) , Adenoviridae , Verduras
14.
Biomed Pharmacother ; 168: 115777, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913732

RESUMO

End-stage of liver fibrosis as a precancerous state could lead to cirrhosis and hepatocellular carcinoma which liver transplantation is the only effective treatment. Previous studies have indicated that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) protect against hepatic injuries. However, free OCA administration results in side effects in clinical trials that could be alleviated by applying bio carriers such as MSC-derived exosomes (Exo) with the potential to mimic the biological regenerative effect of their parent cells, as proposed in this study. Loading OCA into the Exo was conducted via water bath sonication. Ex vivo bio distribution studies validated the Exo-loaded OCA more permanently accumulated in the liver. Using CCL4-induced liver fibrosis, we proposed whether Exo isolated from human Warton's Jelly mesenchymal stem cells loaded with a minimal dosage of OCA can facilitate liver recovery. Notably, Exo-loaded OCA exerted additive anti-fibrotic efficacy on histopathological features in CCL4-induced fibrotic mice. Compared to baseline, Exo-mediated delivery OCA results in marked improvements in the fibrotic-related indicators as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations. Accordingly, the synergistic impact of Exo-loaded OCA as a promising approach is associated with the inactivation of hepatic stellate cells (HSCs), extracellular matrix (ECM) remodeling, and Fxr-Cyp7a1 cascade on CCL4-induced liver fibrosis mice. In conclusion, our data confirmed the additive protective effects of Exo-loaded OCA in fibrotic mice, which suggests a valuable therapeutic strategy to combat liver fibrosis. Furthermore, the use of Exo for accurate drug delivery to the liver tissue can be inspiring.


Assuntos
Exossomos , Camundongos , Humanos , Animais , Exossomos/metabolismo , Cirrose Hepática/metabolismo , Fígado , Fibrose , Transdução de Sinais , Matriz Extracelular/metabolismo
15.
Front Microbiol ; 14: 1273094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965560

RESUMO

Introduction: The dramatic increase in multidrug-resistance of Clostridioides difficile isolates has led to the search for new complementary medicines against C. difficile infection (CDI). In this study, we aimed to examine the inhibitory effects of hydroethanolic extract of Mentha longifolia L. (ETOH-ML) on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S)-induced inflammation and apoptosis. Methods: The active phytochemical components of ETOH-ML were detected using GC and HPLC. The antimicrobial properties of the extract were examined against C. difficile RT001. Furthermore, cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of ETOH-ML, Tox-S of C. difficile RT001, and their combination were assessed. Anti-inflammatory and anti-apoptotic activities of ETOH-ML were explored in Tox-S stimulated Caco-2 cells using RT-qPCR. Results: Based on our results, rosmarinic acid was the main phytochemical component of ETOH-ML. The extract showed significant antimicrobial activity against C. difficile RT001 by agar dilution and broth microdilution methods. Moreover, ETOH-ML at concentrations of <25 µg/ml had no significant effect on cell viability compared to untreated cells. Treatment cells with the extract (10 or 25 µg/ml) significantly increased the cell viability and reduced the percentage of cell rounding in Caco-2 and Vero cells treated by Tox-S, respectively (P < 0.0001). Co-treatment of Tox-S stimulated Caco-2 cells with ETOH-ML showed significant anti-inflammatory and anti-apoptotic activities by downregulating the gene expression level of IL-8, IL-1ß, TNF-α, iNOS, TGF-ß, NF-κB, Bax, and caspase-3, while upregulating the expression level of Bcl-2. Discussion: Our results demonstrated for the first time the antimicrobial, anti-inflammatory, and anti-apoptotic effects of M. longifolia extract on C. difficile RT001 and its Tox-S. However, further research is needed to evaluate the potential application of M. longifolia extract on CDI treatment in clinical setting.

16.
Arch Endocrinol Metab ; 68: e230017, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948568

RESUMO

Objective: Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and a growing global epidemic. In NAFLD, liver fat surpasses 5% of hepatocytes without the secondary causes of lipid accumulation or excessive alcohol consumption. Given the link between NAFLD and insulin resistance, the possible association between the rs2854744 (-202 G>T) promoter polymorphism of insulin-like growth factor binding protein 3 (IGFBP3) gene and NAFLD was investigated in this study. Materials and methods: In this genetic case-control association study, the IGFBP3 rs2854744 genotypes of 315 unrelated individuals, including 156 patients with biopsy-proven NAFLD and 159 controls, were determined using polymerase chain reaction/restriction fragment length polymorphism analyses. Results: The "GT+TT" genotype of the IGFBP3 rs2854744 polymorphism, compared with the "GG" genotype, was associated with a 2.7-fold increased risk of NAFLD after adjustment for confounding factors (P = 0.009; odds ratio [OR] = 2.71; 95% confidence interval [CI] = 1.19-3.18). Additionally, the IGFBP3 rs2854744 "T" allele, in comparison with the "G" allele, was significantly overrepresented in NAFLD patients than the controls (P = 0.008; OR = 1.85; 95%CI = 1.23-2.94). Conclusion: Our findings first indicated that the IGFBP3 rs2854744 "GT+TT" genotype is a marker of increased NAFLD susceptibility; however, it needs to be supported by further investigations in other populations.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Estudos de Associação Genética , Genótipo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo Genético/genética
17.
Sci Rep ; 13(1): 20584, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996480

RESUMO

Gut microbiota dysbiosis is intimately associated with development of non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Nevertheless, the gut microbial community during the course of NAFLD and NASH is yet to be comprehensively profiled. This study evaluated alterations in fecal microbiota composition in Iranian patients with NAFLD and NASH compared with healthy individuals. This cross-sectional study enrolled 15 NAFLD, 15 NASH patients, and 20 healthy controls, and their clinical parameters were examined. The taxonomic composition of the fecal microbiota was determined by sequencing the V3-V4 region of 16S rRNA genes of stool samples. Compared to the healthy controls, NAFLD and NASH patients presented reduced bacterial diversity and richness. We noticed a reduction in the relative abundance of Bacteroidota and a promotion in the relative abundance of Proteobacteria in NAFLD and NASH patients. L-histidine degradation I pathway, pyridoxal 5'-phosphate biosynthesis I pathway, and superpathway of pyridoxal 5'-phosphate biosynthesis and salvage were more abundant in NAFLD patients than in healthy individuals. This study examined fecal microbiota dysbiosis in NAFLD and NASH patients and presented consistent results to European countries. These condition- and ethnicity-specific data could provide different diagnostic signatures and therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Microbioma Gastrointestinal/genética , Irã (Geográfico) , Disbiose/microbiologia , Estudos Transversais , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fosfatos/metabolismo , Piridoxal/metabolismo , Fígado/metabolismo
18.
Microb Pathog ; 185: 106450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979713

RESUMO

Autophagy is a homeostatic process that can promote cell survival or death. However, the exact role of autophagy in Clostridioides difficile infection (CDI) is still not precisely elucidated. Here, we investigate the role of distinct C. difficile ribotypes (RTs) in autophagy induction using Caco-2 cells. The expression analysis of autophagy-associated genes and related miRNAs were examined following treatment of Caco-2 cells with C. difficile after 4 and 8 h using RT-qPCR. Toxin production was assessed using enzyme-linked immunosorbent assay (ELISA). Immunofluorescence analysis was performed to detect MAP1LC3B/LC3B, followed by an autophagic flux analysis. C. difficile significantly reduced the viability of Caco-2 cells in comparison with untreated cells. Elevated levels of LC3-II and SQSTM1/p62 by C. difficile RT001 and RT084 in the presence of E64d/leupeptin confirmed the induction of autophagy activity. Similarly, the immunofluorescence analysis demonstrated that C. difficile RT001 and RT084 significantly increased the amount of LC3-positive structures in Caco-2 cells. The induction of autophagy was further demonstrated by increased levels of LC3B, ULK1, ATG12, PIK3C3/VPS34, BECN1 (beclin 1), ATG5, and ATG16L1 transcripts and reduced levels of AKT and MTOR gene expression. The expression levels of MIR21 and MIR30B, microRNAs that suppress autophagy, were differentially affected by C. difficile. In conclusion, the present work revealed that C. difficile bacteria can induce autophagy through both toxin-dependent and -independent mechanisms. Also, our results suggest the potential role of other C. difficile virulence factors in autophagy modulation using intestinal cells in vitro.


Assuntos
Clostridioides difficile , Humanos , Células CACO-2 , Clostridioides difficile/genética , Clostridioides , Ribotipagem , Autofagia , Reação em Cadeia da Polimerase
19.
Pathol Res Pract ; 251: 154809, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797383

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a major public health concern worldwide due to its rapidly rising prevalence and its potential to progress into end-stage liver disease. While the precise pathophysiology underlying NAFLD remains incompletely understood, it is strongly associated with various environmental triggers and other metabolic disorders. Epigenetics examines changes in gene expression that are not caused by alterations in the DNA sequence itself. There is accumulating evidence that epigenetics plays a key role in linking environmental cues to the onset and progression of NAFLD. Our understanding of how epigenetic mechanisms contribute to NAFLD pathophysiology has expanded considerably in recent years as research on the epigenetics of NAFLD has developed. This review summarizes recent insights into major epigenetic processes that have been implicated in NAFLD pathogenesis including DNA methylation, histone acetylation, and microRNAs that have emerged as promising targets for further investigation. Elucidating epigenetic mechanisms in NAFLD may uncover novel diagnostic biomarkers and therapeutic targets for this disease. However, many questions have remained unanswered regarding how epigenetics promotes NAFLD onset and progression. Additional studies are needed to further characterize the epigenetic landscape of NAFLD and validate the potential of epigenetic markers as clinical tools. Nevertheless, an enhanced understanding of the epigenetic underpinnings of NAFLD promises to provide key insights into disease mechanisms and pave the way for novel prognostic and therapeutic approaches.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Epigênese Genética , Metilação de DNA , Prognóstico , Fígado/patologia , Progressão da Doença
20.
Front Microbiol ; 14: 1256042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869674

RESUMO

Introduction: Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods: Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results: The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion: cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...